An expeditious synthesis of chaetomellic anhydrides A and B, and analogues

Stéphane Poigny, M ichèle G uyot and M ohammad Samadi*
L aboratoire de Chimie, URA 401 CNRS, M uséum N ational d'H istoire N aturelle, 63 rue Buffon, F-75 005 Paris, France

C haetomellic anhydrides A and B and analogues have been prepared in one step by Barton radical decarboxylation; namely, irradiation of thiohydroxamic esters derived from carboxylic acids, in the presence of citraconic anhydride.

The ras oncogen has been reported to be expressed in many human tumours and tumour cell lines. ${ }^{1}$ The activity of the product of ras oncogen, R as (a GTP-binding protein), can be correlated with the addition of a C_{15} farnesyl unit to R as by protein-farnesyl transferase (PF Tase) and it is this addition which is essential for its association with cell membranes and promotion of cell transforming activity. ${ }^{2}$

PFTase inhibitors were found to reduce the number of phenotypes of cells transformed by Ras, in cell culture and animal models, ${ }^{3}$ which stimulated an extensive research program for the design of potent inhibitors of this enzyme. ${ }^{4}$

In the search for ras protein-farnesyl transferase inhibitors, chaetomellic acids A 1, and B 2 were isolated from fermentation extracts of the coleomycete Chaetomellia acutiseta. ${ }^{5}$ Their inhibitory activity in the farnesyl pyrophosphate binding to mammalian PFTase is in the nm concentration range, probably because the diacids act as stable pyrophosphate mimics.

Chaetomellic acid B
2

Chaetomellic anhydride A
3a

3g

Because of their potent inhibitory activity, chaetomellic acids have been the object of considerable synthetic effort. Thus, several approaches have been reported for the total synthesis of chaetomellic acids: by non-stereospecific aldol/elimination, ${ }^{6}$ cobalt-mediated radical coupling, ${ }^{\text {, }}$ a malonic ester-type synthesis ${ }^{8}$ and finally addition of organocuprates to alkynes. ${ }^{9}$

H erein we report a further, more efficient one-step synthesis of chaetomellic acids, by way of Barton radical decarboxyl-
ation. ${ }^{10,11}$ Thus, the readily available pentadecanoic acid 4 a was converted into its thiohydroxamic ester 5, by the DCC coupling method (Scheme 1). Irradiation in situ with a tungsten light

Scheme 1
(500 W) of the thiohydroxamic ester 5, in the presence of citraconic anhydride (5 equiv.), during 30 min , gave an intermediate addition product 6 which, without isolation, undergoes complete β-elimination after flash chromatography on silica gel to furnish chaetomellic anhydride A 3 a (70%). In order to understand the course of the β-elimination, thethiohydroxamic ester was isolated and irradiated in the presence of citraconic anhydride in CDCl_{3}. A nalysis of the reaction mixture was followed by NMR spectroscopy and showed the co-existence of the addition product $6 \mathbf{a}$ as the only isomer, and of the chaetomellic anhydride 3a in the ratio 3:1 after irradiation for 30 min . A fter the mixture had been stirred for 3 days the addition product 6 a had completely disappeared and only signals for the β-elimination product were observed in the N M R spectrum. The rapid elimination of the 2-pyridylthio group of the intermediate 6 on silica, which proceeds by syn elimination, established the trans stereochemical relationship of the pyridylthio and the alkyl substituents, resulting from the trans addition of the radical to citraconic anhydride. ${ }^{7,12}$
Other 2,3-dialkylmaleic anhydrides were prepared: these include the naturally occurring 2-hexyl-3-methylmaleic anhydride 3b (isolated from the essential oil of A gropyrum repens rhizome) ${ }^{13}$ and 2-ethyl-3-methylmaleic anhydride 3c (from the volatile oil of Paederia foetida L.,14 and from fruits of Sambucus nigra L.). ${ }^{15}$ The results are given in Table 1 .
For the synthesis of chaetomellic anhydride B, we first prepared the heptadecenoic acid $\mathbf{4 g}$ by a more practical approach than that reported in the literature, ${ }^{16}$ namely decarboxylation of the corresponding thiohydroxamic ester $\mathbf{5 h}$ derived from oleic acid $\mathbf{4 h}$ in the presence of BrCCl_{3} to give the bromo compound

Table 1

Entry	A cid	\% Product (yield)	
1	$\mathbf{4 a}$	Chaetomellic A	3a (70)
2	$\mathbf{4 b}$		3b (69)
3	$\mathbf{4 c}$		3c (46)
4	$\mathbf{4 d}$		$3 \mathrm{~d}(65)$
5	$\mathbf{4 e}$		$3 \mathrm{e}(74)$
6	$\mathbf{4 f}$		$3 \mathrm{f}(75)$
7	$\mathbf{4 g}$	Chaetomellic B	$3 \mathrm{~g}(60)$
8	$\mathbf{4 h}$		$3 \mathrm{~h}(72)$

7. ${ }^{17}$ Subsequent iodination and oxidation ${ }^{18}$ furnished the heptadecenal $\mathbf{9}$, which was then treated with Jones reagent to provide the corresponding acid 4 g in 74% overall yield (Scheme 2). Thus, the radical decarboxylation of heptadecenoic and

Scheme 2

oleic acids, was carried out in the presence of a large excess (10 equiv.) of citraconic anhydride to prevent intramolecular radical cyclisation, and provided the chaetomellic anhydride B 3g, and its analogue 3 h in 60 and 72% yields, respectively.

In summary, we have described an efficient one-step total synthesis of chaetomellic anhydrides and their analogues from readily available carboxylic acids. The mild conditions of the reaction, and the easy elimination of the pyridylthio group in 6 makes the decarboxylation a new route to the rapid synthesis of diverse PFTase inhibitor analogues.

Experimental

All the reactions were carried out under an argon atmosphere. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AC 300 M Hz spectrometer. Chemical shifts (δ) are expressed in ppm from $\mathrm{M}_{4} \mathrm{Si}$ as internal standard. M ass spectra were recorded on a K ratos MS 50 instrument at 70 eV or $\mathrm{Cl}\left(\mathrm{NH}_{3}\right)$ I IR spectra were recorded on a N icolet (impact 400D) FT IR. All reagents were obtained from commercial suppliers and used without further purification. M ethylene dichloride was distilled from CaH_{2}. Flash chromatography was effected on silica (M erck K ieselgel 60, 230-400 mesh) with mixtures of ethyl acetate and hexane as eluents. TLC analyses were performed on thin-layer analytical plates 60F 254 (M erck). Elementary analyses were carried out in the Institu de Chimie des Substances N aturelles, G if-s-Y vette

G eneral procedure

Note: Since the N -hydroxypyridine-2-thiones are somewhat
sensitive to daylight, it is advisable to cover the reaction flasks with aluminium foil.

DCC (2.2 mmol) was added under argon to a solution of the carboxylic acid 4a-h (2 mmol) and 2-mercaptopyridine N -oxide (2.2 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. The mixture was then stirred at room temperature for 2 h after which citraconic anhydride (10 mmol ; except for heptadecenoic and oleic acids, 20 mmol) was then added to it; the aluminium foil was removed and the mixture was irradiated with a tungsten lamp (500 W) at $10-15^{\circ} \mathrm{C}$ for 30 min . A fter this the mixture was filtered to remove the urea and then evaporated under reduced pressure. The residue was dissolved in diethyl ether ($100 \mathrm{~cm}^{3}$) and the solution washed with 5% aqueous $\mathrm{NaHCO}_{3}\left(50 \mathrm{~cm}^{3}\right.$), water (50 cm^{3}) and brine ($50 \mathrm{~cm}^{3}$) and then dried ($\mathrm{M} \mathrm{gSO}_{4}$). A fter the mixture had been evaporated under reduced pressure the excess of citraconic anhydride was removed in high vacuum, and the residue subjected to flash chromatography on silica with ethyl acetate-hexane ($1: 9$) as the eluent to yield compounds 3a-h.

3-Tetradecyl-4-methylfuran-2,5-dione (chaetomellic anhydride A) $3 \mathrm{a} . \mathrm{m} / \mathrm{z}$ (CI) 309 ($\mathrm{M} \mathrm{H}^{+}$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1850,1823,1769$, 1673, 922 and 735; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.43\left(2 \mathrm{H}\right.$, t, vinyl $\left.\mathrm{CH}_{2}\right), 2.05$ $\left(3 \mathrm{H}, \mathrm{s}\right.$, vinyl $\left.\mathrm{CH}_{3}\right), 1.56(2 \mathrm{H}, \mathrm{m}), 1.26(22 \mathrm{H}, \mathrm{m})$ and $0.86(3 \mathrm{H}$, t , alkyl $\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 166.2,165.8,144.7,140.4,31.9,29.6$ to $29.1\left(9 \mathrm{CH}_{2}\right), 27.5,24.3,22.6,14.0\left(a l k y l \mathrm{CH}_{3}\right)$ and $9.4\left(4-\mathrm{CH}_{3}\right)$; δ_{H} and δ_{C} spectral results were in agreement with literature values. ${ }^{5}$
3-H exyl-4-methylfuran-2,5-dione 3b. m/z (CI) $197\left(\mathrm{M} \mathrm{H}^{+}\right.$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1850,1826,1769,1673,923$ and $740 ; \mathrm{m} / \mathrm{z}$ (CI) $197\left(\mathrm{M}^{+}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.42\left(2 \mathrm{H}, \mathrm{t}\right.$, vinyl CH ${ }_{2}$), $2.04(3 \mathrm{H}, \mathrm{s}$, vinyl $\left.\mathrm{CH}_{3}\right), 1.54(2 \mathrm{H}, \mathrm{m}), 1.27(6 \mathrm{H}, \mathrm{m})$ and $0.85\left(3 \mathrm{H}, \mathrm{t}\right.$, alkyl $\left.\mathrm{CH}_{3}\right)$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 166.4,165.8,144.7,140.4,31.3,29.0,27.5,24.4$, 22.4, 11.9 (alkyl CH_{3}) and $9.4\left(4-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{H}}$ and δ_{C} spectral results were in agreement with literature values. ${ }^{13}$
3-E thyl-4-methylfuran-2,5-dione 3c. m/z (CI) 141 ($\mathrm{M} \mathrm{H}^{+}$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1844,1769,1673$ (weak), 930 and 738 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.5\left(2 \mathrm{H}, \mathrm{q}\right.$, vinyl $\left.\mathrm{CH}_{2}\right), 2.04\left(3 \mathrm{H}, \mathrm{s}\right.$, vinyl $\left.\mathrm{CH}_{3}\right)$ and 1.23 (3 H , t, alkyl CH 3); $\delta_{\mathrm{c}} 166.2,165.7,145.6,140.1,29.3,11.9$ (alkyl CH_{3}) and $9.3\left(4-\mathrm{CH}_{3}\right)$; δ_{H} and δ_{c} spectral results were in agreement with literature values. ${ }^{14,15}$

4-M ethyl-4-tridecylfuran-2,5-dione 3d. m/z (CI) 295 ($\mathrm{M} \mathrm{H}^{+}$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1855,1823,1769,1673,922$ and $735 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $2.41\left(2 \mathrm{H}, \mathrm{t}\right.$, vinyl CH 2), $2.03\left(3 \mathrm{H}, \mathrm{s}\right.$, vinyl CH $\left.{ }_{3}\right), 1.54(2 \mathrm{H}, \mathrm{m})$, $1.23(20 \mathrm{H}, \mathrm{m})$ and $0.84\left(3 \mathrm{H}, \mathrm{t}\right.$, alkyl $\left.\mathrm{CH}_{3}\right)$; $\delta_{\mathrm{c}} 166.2,165.8$, 144.7, 140.4, 31.9, 29.6 to 29.1 ($8 \mathrm{CH}_{2}$), 27.5, 24.4, 22.6, 14.0 (alkyl CH_{3}) and $9.4\left(4-\mathrm{CH}_{3}\right)$ (Found: $\mathrm{C}, 73.26 ; \mathrm{H}, 10.23$. $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C, $73.46 ; \mathrm{H}, 10.20 \%$).

3-M ethox ycarbonylethyl-4-methylfuran-2,5-dione $3 \mathrm{e} . \mathrm{m} / \mathrm{z}$ (CI) $199\left(\mathrm{M} \mathrm{H}^{+}\right)$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1845,1769,1741,1670,920,902$ and $740 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.7\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.73\left(4 \mathrm{H}, 2 \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ and $2.13\left(3 \mathrm{H}, \mathrm{s}\right.$, vinyl $\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}} 172.0,165.8,165.5,142.1$ (2 ethylenic Cs), $51.9\left(\mathrm{OCH}_{3}\right), 30.7$ and $19.8\left(\mathrm{CH}_{2}\right)$ and 9.6 (4-CH3).
3-M ethyl-4-phenethylfuran-2,5-dione $3 \mathrm{f} . \mathrm{m} / \mathrm{z}(\mathrm{CI}) 217$ ($\mathrm{M} \mathrm{H}^{+}$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1825,1760,1670,936,890,759,730$ and 705 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.38$ to $7.10(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 2.87\left(2 \mathrm{H}, \mathrm{t}, \mathrm{A}_{2} \mathrm{~B}_{2}\right.$ system), $2.73\left(2 \mathrm{H}, \mathrm{t}, \mathrm{A}_{2} \mathrm{~B}_{2}\right.$ system) and $1.67\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}} 165.8$, 165.6, 142.8, 141.5, 139.4, 128.5, 128.2, 126.5, 33.2, 26.3 and 8.8 (Found: $\mathrm{C}, 72.61 ; \mathrm{H}, 5.64 . \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3}$ requires $\mathrm{C}, 72.22 ; \mathrm{H}$, 5.55\%).
(Z)-3-H exadec-7-enyl-4-methylfuran-2,5-dione, chaetomellic anhydride B $3 \mathrm{~g} . \mathrm{m} / \mathrm{z}(\mathrm{Cl}) 335\left(\mathrm{M} \mathrm{H}^{+}\right)$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3010$, 1857, 1769, 1675, 923, 766 and 738; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.35(2 \mathrm{H}, \mathrm{m}$, ethylenic H), $2.43\left(2 \mathrm{H}, \mathrm{t}\right.$, vinyl $\left.\mathrm{CH}_{2}\right)$, $2.04\left(3 \mathrm{H}, \mathrm{s}\right.$, vinyl $\left.\mathrm{CH}_{3}\right)$, $1.95(4 \mathrm{H}, \mathrm{m}), 1.55(2 \mathrm{H}, \mathrm{m}), 1.23(18 \mathrm{H}, \mathrm{m})$ and $0.85(3 \mathrm{H}, \mathrm{t}$, alkyl CH_{3}); $\delta_{\mathrm{c}} 166.1,165.5,144.7,140.3,130.7,129.9,32.6$, 32.4, 31.9, 29.7 to $27.5\left(8 \mathrm{CH}_{2}\right), 24.4,22.6,14.1$ (alkyl CH3 ${ }_{3}$) and $9.5\left(4-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{H}}$ and δ_{C} spectral results were in agreement with literature values. ${ }^{5}$
(Z)-3-H eptadec-8-enyl-4-methylfuran-2,5-dione $3 \mathrm{~h} . \mathrm{m} / \mathrm{z}(\mathrm{Cl})$ $366\left(\mathrm{M}+\mathrm{NH}_{4}^{+}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3010,1857,1769,922$ and

740; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.31(2 \mathrm{H}, \mathrm{m}$, ethylenic H$), 2.42(2 \mathrm{H}, \mathrm{t}$, vinyl $\left.\mathrm{CH}_{2}\right), 2.04(3 \mathrm{H}, \mathrm{s}$, vinyl CH 3) , $1.97(4 \mathrm{H}, \mathrm{m}), 1.54(2 \mathrm{H}, \mathrm{m}), 1.25$ $(20 \mathrm{H}, \mathrm{m})$ and $0.85\left(3 \mathrm{H}, \mathrm{t}\right.$, alkyl CH 3); $\delta_{\mathrm{c}} 166.1,165.2,144.7$, 140.4, 130.1, 129.6, 32.6, 31.9, 29.7 to $29.0\left(7 \mathrm{CH}_{2}\right), 27.5,27.2$, 27.1, 24.4, 22.7, 14.1 (alkyl CH_{3}) and $9.4\left(4-\mathrm{CH}_{3}\right)$ (Found: C, 76.03; $\mathrm{H}, 10.38 . \mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.86 ; \mathrm{H}, 10.35 \%$).

(Z)-1-B romoheptadec-8-ene 7^{17}

To a solution of oleic acid $4 \mathrm{~h}(20 \mathrm{mmol}, 5.64 \mathrm{~g})$, and 2 mercaptopyridine N -oxide ($22 \mathrm{mmol}, 2.8 \mathrm{~g}$), in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 $\left.\mathrm{cm}^{3}\right)$, D CC ($22 \mathrm{mmol}, 4.53 \mathrm{~g}$) was added. Themixturewas stirred at room temperature under argon for 1 h after which the $\mathrm{N}, \mathrm{N}^{\prime}-$ dicyclohexylurea was filtered off and washed with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under aluminium foil protection. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed from the mixture in vacuo at room temperature with light protection (aluminium foil) and the residue was taken up in BrCCl_{3} $\left(40 \mathrm{~cm}^{3}\right)$. The mixture was irradiated with a tungsten lamp (500 W) at $10-15{ }^{\circ} \mathrm{C}$ for 30 min after which the BrCCl_{3} was removed in vacuo and the residue dissolved in diethyl ether ($100 \mathrm{~cm}^{3}$). The solution was washed with water ($50 \mathrm{~cm}^{3}$) and brine ($50 \mathrm{~cm}^{3}$), dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was subjected to flash chromatography on silica with hexane as the eluent, to give the bromo compound as a colourless oil ($6.03 \mathrm{~g}, 95 \%$); m/z (CI) 316-318 ($\mathrm{M} \mathrm{H}^{+}$); $v_{\text {max }}$ (neat)/ cm^{-1} 3010, 1660 and 725; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.34(2 \mathrm{H}, \mathrm{m}$, ethylenic H$), 3.38$ ($2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{Br}$), $2.03(4 \mathrm{H}, \mathrm{m}), 1.83(2 \mathrm{H}, \mathrm{m}), 1.43(2 \mathrm{H}, \mathrm{m}), 1.31$ $(18 \mathrm{H}, \mathrm{m})$ and $0.87\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}} 130.0,129.6,33.7,32.8$, 32.6, 31.9, 29.7, 29.6, 29.5, 29.3, 29.0, 28.7, 28.1, 27.2, 27.1, 22.7 and 14.1.

(Z)-8-H eptadecenal 9

To a solution of (Z)-1-bromoheptadec-8-enal 7 (17.35 mmol , 5.5 g) in dry acetone ($100 \mathrm{~cm}^{3}$) was added sodium iodide (34.7 mmol, 5.2 g); the stirred mixture was heated under reflux for 2 h and then allowed to cool. It was then filtered and concentrated by removal of acetone in vacuo. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution washed with water and brine, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right.$) and concentrated. The crude iodo compound 8 was added to a stirred mixture of DM SO ($50 \mathrm{~cm}^{3}$) and sodium hydrogen carbonate (8.7 g) at $150^{\circ} \mathrm{C}$ under argon. A fter 15 min the mixture was rapidly cooled and then poured into water (100 cm^{3}). The aqueous solution was extracted with diethyl ether $\left(4 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with water, dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$, filtered and concentrated. The residue was subjected to flash chromatography on silica with hexane-ethyl acetate ($95: 5$) as eluent to give the aldehyde 9 as a colourless oil $(3.6 \mathrm{~g}, 82 \%) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 252\left(\mathrm{M}^{+}\right) ; v_{\text {max }}(\mathrm{neat}) / \mathrm{cm}^{-1} 1741$ and 725 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.78(1 \mathrm{H}, \mathrm{t}, \mathrm{CH} 0), 5.33(2 \mathrm{H}, \mathrm{m}$, ethylenic H$), 2.42$ $\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{CH}_{2} \mathrm{CHO}\right), 2.01(4 \mathrm{H}, \mathrm{m}), 1.63(2 \mathrm{H}, \mathrm{m}), 1.29(18 \mathrm{H}, \mathrm{m})$ and $0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{c}} 202.6,130.0,129.5,43.8,31.84,29.7$ to $27.0\left(9 \mathrm{CH}_{2}\right), 22.6,22.0$ and 14.0 (Found: C, 70.37 ; $\mathrm{H}, 12.28$ $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 70.16 ; \mathrm{H}, 12.64 \%$).

(Z)-8-H eptadecenoic acid $\mathbf{4 g}^{16}$

To a solution of the aldehyde $9(1.02 \mathrm{mmol}, 257 \mathrm{mg})$ in acetone ($5 \mathrm{~cm}^{3}$), Jones reagent ($1.6 \mathrm{~cm}^{3}$, 2 equiv.) was added dropwise. A fter the mixture had been stirred for 9 h at room temperature, additional Jones reagent ($0.8 \mathrm{~cm}^{3}, 1$ equiv.) was added to the mixture and stirring continued overnight at room temperature Propan-2-ol ($3 \mathrm{~cm}^{3}$) was added to the mixture which was then stirred for 1 h . A fter this the mixture was diluted with diethyl ether and filtered through Celite. The filtrate was evaporated under reduced pressure and the residue subjected to flash chromatography on silica with hexane-ethyl acetate (9:1) to give the heptadecenoic acid 4 g as a colourless oil ($258 \mathrm{mg}, 95 \%$); $\mathrm{m} / \mathrm{z}(\mathrm{CI}) 268$ (M); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3500-2500$ (acid $\left.v_{\text {OH }}\right), 1714$ and 732; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.32(2 \mathrm{H}, \mathrm{m}$, ethylenic H$), 2.35(2 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 2.02(4 \mathrm{H}, \mathrm{m}), 1.64(2 \mathrm{H}, \mathrm{m}), 1.30(18 \mathrm{H}, \mathrm{m})$ and $0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}} 180.2,130.1,129.6,34.1,31.9,29.8-27.1$ $\left(10 \mathrm{CH}_{2}\right), 24.6,22.7$ and 14.1.

R eferences

1 M. Barbacid, Annu. Rev. Biochem., 1987, 56, 779.
2 J. B. Gibbs, C ell, 1991, 65, 1 and references cited therein.
3 P. J. Casey, P. K. Solski, C. J. D er and J. E. Buss, Proc. Natl. A cad. Sci., 1989, 86, 8223.
4 S. L. Graham, Exp. Opin. Ther. Patents, 1995, 5, 1269.
5 J. B. Gibbs, D. L. Pompliano, S. D. M osser, E. Rands, R. S. Lingman, S. B. Singh, E. M. Scolnick, N. E. K ohl and A. Olif, J. Biol. Chem., 1993, 268, 7617; S. B. Singh, D. L. Zink, J. M. Liesch, M . A . G oetz, R . G. Jenkins, M . N allin-Omstead, K . C. Silverman, G. F. Bills, R. T. M osley, J. B. Gibbs, G. Albers-Schonberg and R. S. Lingman, Tetrahedron, 1993, 49, 5917.

6 S. B. Singh, Tetrahedron L ett., 1993, 34, 6521.
7 B. P. Branchaud and R. M . Slade, Tetrahedron L ett., 1994, 35, 4071.
8 M. J. K ates and J. H. Schauble, J. Org. Chem., 1996, 61, 4164.
9 E. S. R atemi, J. M. D olence, C. D. Poulter and J. C. Vederas, J. Org. C hem., 1996, 61, 6296.
10 D. H. R. Barton, D. Crich and W. B. M otherwell, J. Chem. Soc., Chem. Commun., 1983, 939; D. H. R. Barton, D. Crich and W. B. M otherwell, Tetrahedron, 1985, 41, 3901.

11 D. Crich and L. Quintero, Chem. Rev., 1989, 89, 1413; D. H. R. Barton and S. Z. Zard, J anssen Chimica A cta, 1987, 4, 3.
12 D. H. R. Barton, A. Gateau-Olesker, S. D. Gero, B. Lacher, C. Tachdjian and S. M. Zard, J. C hem. Soc., C hem. Commun., 1987, 1790.

13 R . Boesel and H. Schilcher, P Ianta M ed., 1989, 55, 399.
14 K. C. Wong and G. L. Tan, Flavour F ragrance J., 1994, 9, 25.
15 L. Poll and M . J. Lewis, Lebensm. W iss. Technol., 1986, 19, 258.
16 H. J. G oller and D. S. Sgoutas, B iochemistry, 1970, 24, 4801
17 W. G. D auben, D. P. Bridon and B. A. K owalczyk, J. Org. Chem., 1989, 54, 6101.
18 A. P. Johnson and A. Pelter, J. Chem. Soc., 1964, 520.

Paper 7/02668D
Received 18th A pril 1997
A ccepted 12th M ay 1997

